Search results for "Bayesian [statistics]"
showing 10 items of 228 documents
Forecasting correlated time series with exponential smoothing models
2011
Abstract This paper presents the Bayesian analysis of a general multivariate exponential smoothing model that allows us to forecast time series jointly, subject to correlated random disturbances. The general multivariate model, which can be formulated as a seemingly unrelated regression model, includes the previously studied homogeneous multivariate Holt-Winters’ model as a special case when all of the univariate series share a common structure. MCMC simulation techniques are required in order to approach the non-analytically tractable posterior distribution of the model parameters. The predictive distribution is then estimated using Monte Carlo integration. A Bayesian model selection crite…
Bayesian Modelling of Confusability of Phoneme-Grapheme Connections
2007
Deficiencies in the ability to map letters to sounds are currently considered to be the most likely early signs of dyslexia. This has motivated the use of Literate, a computer game for training this skill, in several Finnish schools and households as a tool in the early prevention of reading disability. In this paper, we present a Bayesian model that uses a student's performance in a game like Literate to infer which phoneme-grapheme connections student currently confuses with each other. This information can be used to adapt the game to a particular student's skills as well as to provide information about the student's learning progress to their parents and teachers. We apply our model to …
Batch Methods for Resolution Enhancement of TIR Image Sequences
2015
Thermal infrared (TIR) time series are exploited by many methods based on Earth observation (EO), for such applications as agriculture, forest management, and meteorology. However, due to physical limitations, data acquired by a single sensor are often unsatisfactory in terms of spatial or temporal resolution. This issue can be tackled by using remotely sensed data acquired by multiple sensors with complementary features. When nonreal-time functioning or at least near real-time functioning is admitted, the measurements can be profitably fed to a sequential Bayesian algorithm, which allows to account for the correlation embedded in the successive acquisitions. In this work, we focus on appli…
Revisiting the Epipalaeolithic-Neolithic Transition in the Extreme NW of Africa : The Latest Results of the Chronological Sequence of the Cave of Kaf…
2021
[EN] This study focuses on the chronostratigraphic sequence of the Cave of Kaf Taht el-Ghar (Dar Ben Karrich, Tétouan, Morocco) excavated in 2012 in the framework of the AGRIWESTMED research project. The broad sequence reveals a series of occupations ranging from the Pleistocene (Moroccan Aterian) to recent historical times. Our research identifies a rich Early Neolithic phase (sixth millennium cal BC) containing the earliest pottery and domesticated animal and plant remains in the western Maghreb. However, this Early Neolithic level is not an immediate successor of the last traces of the Epipalaeolithic hunter-gatherer occupation, which started at the end of the Younger Dryas (10,900–9700 …
Bayesian Markov switching models for the early detection of influenza epidemics
2008
The early detection of outbreaks of diseases is one of the most challenging objectives of epidemiological surveillance systems. In this paper, a Markov switching model is introduced to determine the epidemic and non-epidemic periods from influenza surveillance data: the process of differenced incidence rates is modelled either with a first-order autoregressive process or with a Gaussian white-noise process depending on whether the system is in an epidemic or in a non-epidemic phase. The transition between phases of the disease is modelled as a Markovian process. Bayesian inference is carried out on the former model to detect influenza epidemics at the very moment of their onset. Moreover, t…
Recent statistical advances and applications of species distribution modeling
2019
En el mundo en que vivimos, producimos aproximadamente 2.5 quintillones de bytes de datos por día. Esta enorme cantidad de datos proviene de las redes sociales, Internet, satélites, etc. Todos estos datos, que se pueden registrar en el tiempo o en el espacio, son información que puede ayudarnos a comprender la propagación de una enfermedad, el movimiento de especies o el cambio climático. El uso de modelos estadísticos complejos ha aumentado recientemente en el contexto del estudio de la distribución de especies. Esta complejidad ha hecho que los procesos inferenciales y predictivos sean difíciles de realizar. El enfoque bayesiano se ha convertido en una buena opción para lidiar con estos m…
Exponential and bayesian conjugate families: Review and extensions
1997
The notion of a conjugate family of distributions plays a very important role in the Bayesian approach to parametric inference. One of the main features of such a family is that it is closed under sampling, but a conjugate family often provides prior distributions which are tractable in various other respects. This paper is concerned with the properties of conjugate families for exponential family models. Special attention is given to the class of natural exponential families having a quadratic variance function, for which the theory is particularly fruitful. Several classes of conjugate families have been considered in the literature and here we describe some of their most interesting feat…
Surface soil water content estimation based on thermal inertia and Bayesian smoothing
2014
Soil water content plays a critical role in agro-hydrology since it regulates the rainfall partition between surface runoff and infiltration and, the energy partition between sensible and latent heat fluxes. Current thermal inertia models characterize the spatial and temporal variability of water content by assuming a sinusoidal behavior of the land surface temperature between subsequent acquisitions. Such behavior implicitly supposes clear sky during the whole interval between the thermal acquisitions; but, since this assumption is not necessarily verified even if sky is clear at the exact epoch of acquisition, , the accuracy of the model may be questioned due to spatial and temporal varia…
Sequential Monte Carlo methods in Bayesian joint models for longitudinal and time-to-event data
2017
El análisis estadístico de la información generada por el seguimiento médico de una enfermedad es un reto muy importante en el ámbito de la medicina personalizada. A medida que avanza el curso evolutivo de la enfermedad en un paciente, su seguimiento genera cada vez más información que debe ser procesada inmediatamente para revisar y actualizar su pronóstico y tratamiento. Nuestro objetivo en esta tesis se centra en dicho proceso de actualización a través de métodos de inferencia secuencial en modelos conjuntos de datos longitudinales y de supervivencia desde una perspectiva Bayesiana. En concreto, proponemos la utilización de métodos secuenciales de Monte Carlo adaptados a modelos conjunto…
Cancer mortality inequalities in urban areas: a Bayesian small area analysis in Spanish cities
2011
incluye "Erratum to: Cancer mortality inequalities in urban areas: a Bayesian small area analysis in Spanish cities" BACKGROUND: Intra-urban inequalities in mortality have been infrequently analysed in European contexts. The aim of the present study was to analyse patterns of cancer mortality and their relationship with socioeconomic deprivation in small areas in 11 Spanish cities. METHODS: It is a cross-sectional ecological design using mortality data (years 1996-2003). Units of analysis were the census tracts. A deprivation index was calculated for each census tract. In order to control the variability in estimating the risk of dying we used Bayesian models. We present the RR of the censu…